You need to be comfortable in expressing a series using sigma notation.

You can use the following rules to manipulate expressions involving sigma notation:

- $\quad \sum_{r=1}^{n} k f(r)=k \sum_{r=1}^{n} f(r)$
- $\sum_{r=1}^{n} f(r)+g(r)=\sum_{r=1}^{n} f(r)+\sum_{r=1}^{n} g(r)$

You can use the following results to evaluate some complicated series
You will not be given these. You will only be give
You will not be given these. You will only be give

- $\sum_{r=1}^{n} 1=$
- $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$
- $\quad \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
- $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$
 You can prove these results using the prof by induction method covered in Chapter 8 of Core Pure 1.

To find the sum of a series that does not start at $r=1$, you can instead use the following result:

- $\sum_{r=k}^{n} f(r)=\sum_{r=1}^{n} f(r)-\sum_{r=1}^{k-1} f(r)$

Example 1: (a) Show that $\sum_{r=1}^{n}(7 r-4)=\frac{1}{2} n(7 n-1)$. (b) Hence evaluate $\sum_{r=20}^{50}(7 r-4)$.	
(a) Manipulating the sum:	$\sum_{r=1}^{n}(7 r-4)=7 \sum_{r=1}^{n} r-4 \sum_{r=1}^{n} 1$
Using the result $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$.	$\left.=7\left[\frac{n}{2}(n+1)\right]-4 n=\frac{1}{2} n[7(n+1)-8)\right]$
Simplifying:	$=\frac{1}{2} n[7 n-1]$
(b) Using the above result to find the sum of a series that does not start at $r=1$:	$\sum_{r=20}^{50}(7 r-4)=\sum_{r=1}^{50}(7 r-4)-\sum_{r=1}^{19}(7 r-4)$
Using our part (a) result with $n=50$ for the first sum and $n=19$ for the second sum:	$\begin{aligned} & =\frac{1}{2}(50)[7(50)-1]-\frac{1}{2}(19)[7(19)-1] \\ & =7471 \end{aligned}$

Example 2: Show that $\sum_{r=1}^{n} r(r+3)(2 r-1)=\frac{1}{6} n(n+1)\left(3 n^{2}+a n+b\right)$, where a and b are integers to be found.

Expanding the brackets:	$\sum_{r=1}^{n} r(r+3)(2 r-1)=\sum_{r=1}^{n} 2 r^{3}+5 r^{2}-3 r$
Manipulating the sum:	$=2 \sum_{r=1}^{n} r^{3}+5 \sum_{r=1}^{n} r^{2}-3 \sum_{r=1}^{n} r$
Using the results for $\sum r, \sum r^{2}, \sum r^{3}:$	$=2\left[\frac{1}{4} n^{2}(n+1)^{2}\right]+5\left[\frac{1}{6} n(n+1)(2 n+1)\right]-3\left[\frac{n}{2}(n+1)\right]$
Simplifying before factoring out $\frac{1}{6} n(n+1):$	$=\frac{1}{2} n^{2}(n+1)^{2}+\frac{5}{6} n(n+1)(2 n+1)-\frac{3 n}{2}(n+1)$
	$=\frac{1}{6} n(n+1)[3 n(n+1)+5(2 n+1)-9]$
Simplifying:	$=\frac{1}{6} n(n+1)\left[3 n^{2}+13 n-4\right]$

Example 3: (a) Show that $\sum_{r=1}^{n}(3 r-2)^{2}=\frac{1}{2} n\left(6 n^{2}-3 n-1\right)$. (b) Hence find any values of n for which $\sum_{r=5}^{n}(3 r-2)^{2}+103 \sum_{r=1}^{28} r \cos \left(\frac{r \pi}{2}\right)=3 n^{3}$.	
(a) Expanding the brackets:	$\sum_{r=1}^{n}(3 r-2)^{2}=\sum_{r=1}^{n} 9 r^{2}-12 r+4$
Manipulating the sum:	$=9 \sum_{r=1}^{n} r^{2}-12 \sum_{r=1}^{n} r+4 \sum_{r=1}^{n} 1$
Using the results for $\sum 1, \Sigma r, \Sigma r^{2}$:	$=\frac{9}{6} n(n+1)(2 n+1)-12\left[\frac{n}{2}(n+1)\right]+4(n)$
Simplifying:	$=\frac{3 n}{2}\left(2 n^{2}+3 n+1\right)-6 n(n+1)+4 n$
Factoring out $\frac{n}{2}$:	$=\frac{n}{2}\left[6 n^{2}+9 n+3-12 n-12+8\right)=\frac{n}{2}\left[6 n^{2}-3 n-1\right]$
Dealing with the first term to begin with; the sum starts at $r=5$ so we need to use the result $\sum_{r=k}^{n} f(r)=\sum_{r=1}^{n} f(r)-\sum_{r=1}^{k=1} f(r)$	$\sum_{r=5}^{n}(3 r-2)^{2}=\sum_{r=1}^{n}(3 r-2)^{2}-\sum_{r=1}^{4}(3 r-2)^{2}$
Using the result from part a:	$\begin{aligned} & \sum_{r=5}^{n}(3 r-2)^{2}=\frac{n}{2}\left[6 n^{2}-3 n-1\right]-\frac{4}{2}\left[6(4)^{2}-3(4)-1\right] \\ & =3 n^{3}-\frac{3 n^{2}}{2}-\frac{n}{2}-166 \end{aligned}$
Dealing with the second term: You can manually calculate the sum once you identify the periodic nature of the sum.	$\sum_{r=1}^{20} r \cos \left(\frac{r \pi}{2}\right)$ has a periodic nature since $\cos \left(\frac{r \pi}{2}\right)$ will be eero for odd r and for even r it will either be 1 or -1 . Simply by writing out the first few terms, we can see what this sum will be: $\sum_{r=1}^{20} r \cos \left(\frac{r \pi}{2}\right)=0-1+0+3+0-5+\cdots-18+0+20$
Adding up the terms:	Adding up the terms manually gives $\sum_{r=1}^{28} r \cos \left(\frac{r \pi}{2}\right)=14$.
Substituting this result back into the given equation:	$3 n^{3}-\frac{3 n^{2}}{2}-\frac{n}{2}-166+103(14)=3 n^{3}$
Simplifying gives us a quadratic:	$\frac{3 n^{2}}{2}+\frac{n}{2}-1276=0$
Solving the quadratic using the quadratic formula: You could also factorise this quadratic.	Quadratic formula: $n=29$ or $n=-\frac{88}{3}$. Term number must be a positive integer so $n=29$.

