Series Cheat Sheet

You need to be comfortable in expressing a series using sigma notation.

This tells us the last value of r for our sequence, i.e. our last term will be 7 - 2(4) = -1This is the value of r where our series starts, i.e. our first term is 7 - 2(1) = 5.

You can use the following rules to manipulate expressions involving sigma notation:

• $\sum_{r=1}^{n} kf(r) = k \sum_{r=1}^{n} f(r)$ • $\sum_{r=1}^{n} f(r) + g(r) = \sum_{r=1}^{n} f(r) + \sum_{r=1}^{n} g(r)$

You can use the following results to evaluate some complicated series:

To find the sum of a series that does not start at r = 1, you can instead use the following result:

• $\sum_{r=k}^{n} f(r) = \sum_{r=1}^{n} f(r) - \sum_{r=1}^{k-1} f(r)$

Example 1: (a) Show that $\sum_{r=1}^{n} (7r-4) = \frac{1}{2}n(7n-1)$. (b) Hence evaluate $\sum_{r=20}^{50} (7r-4)$.	
(a) Manipulating the sum:	$\sum_{r=1}^{n} (7r-4) = 7 \sum_{r=1}^{n} r - 4 \sum_{r=1}^{n} 1$
Using the result $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1).$	$= 7\left[\frac{n}{2}(n+1)\right] - 4n = \frac{1}{2}n[7(n+1) - 8)]$
Simplifying:	$=\frac{1}{2}n[7n-1]$
(b) Using the above result to find the sum of a series that does not start at $r = 1$:	$\sum_{r=20}^{50} (7r-4) = \sum_{r=1}^{50} (7r-4) - \sum_{r=1}^{19} (7r-4)$
Using our part (a) result with $n = 50$ for the first sum and $n = 19$ for the second sum:	$= \frac{1}{2}(50)[7(50) - 1] - \frac{1}{2}(19)[7(19) - 1]$ = 7471

Example 2: Show that $\sum_{r=1}^{n} r(r+3)(2r-1) = \frac{1}{6}n(n+1)$	$(3n^2 + an + b)$, where a
Expanding the brackets:	$\sum_{r=1}^{n} r(r+3)(2r-1)$
Manipulating the sum:	$= 2\sum_{r=1}^{n} r^3 + 5\sum_{r=1}^{n} r^2$
Using the results for $\sum r$, $\sum r^2$, $\sum r^3$:	$= 2\left[\frac{1}{4}n^{2}(n+1)^{2}\right] +$
Simplifying before factoring out $\frac{1}{6}n(n+1)$:	$= \frac{1}{2}n^{2}(n+1)^{2} + \frac{5}{6}n$ $= \frac{1}{6}n(n+1)[3n(n+1)](n+1)[3n(n+1)](n+1)[3n(n+1)](n+1)](n+1)[3n(n+1)](n+1)](n+1)[3n(n+1)](n+1)](n+1)[3n(n+1)](n+1)[3n(n+1)](n+1)](n+1)[3n(n+1)](n+1)[3n(n+1)](n+1)](n+1)[3n(n+1)](n+1)[3n(n+1)](n+1)](n+1)[3n(n+1)](n+1)[3n(n+1)](n+1)[3n(n+1)](n+1)](n+1)[3n(n$
Simplifying:	$=\frac{1}{6}n(n+1)[3n^2+1]$

Example 3: (a) Show that $\sum_{r=1}^{n} (3r-2)^2 = \frac{1}{2}n(6n^2 - 3n - 1).$

(b) Hence find any values of n for which $\sum_{r=5}^{n}(3r-2)^2 + 103\sum_{r=1}^{28}rcc$

(a) Expanding the brackets:	
Manipulating the sum:	=
Using the results for $\sum 1$, $\sum r$, $\sum r^2$:	=
Simplifying:	=
Factoring out $\frac{n}{2}$:	=
Dealing with the first term to begin with; the sum starts at $r = 5$ so we need to use the result $\sum_{r=k}^{n} f(r) = \sum_{r=1}^{n} f(r) - \sum_{r=1}^{k-1} f(r)$	
Using the result from part a:	
Dealing with the second term:	Σ
You can manually calculate the sum once you identify the periodic nature of the sum.	fc W
Adding up the terms:	A
Substituting this result back into the given equation:	3
Simplifying gives us a quadratic:	3
Solving the quadratic using the quadratic formula: You could also factorise this quadratic.	Q

a and b are integers to be found.

$$P = \sum_{r=1}^{n} 2r^{3} + 5r^{2} - 3r$$

$$-3\sum_{r=1}^{n} r$$

$$-5\left[\frac{1}{6}n(n+1)(2n+1)\right] - 3\left[\frac{n}{2}(n+1)\right]$$

$$n(n+1)(2n+1) - \frac{3n}{2}(n+1)$$

$$+1) + 5(2n+1) - 9$$

$$13n - 4$$

$$os\left(\frac{r\pi}{2}\right) = 3n^3.$$

$$\int_{1}^{n} (3r-2)^{2} = \sum_{r=1}^{n} 9r^{2} - 12r + 4$$

$$9\sum_{r=1}^{n} r^{2} - 12\sum_{r=1}^{n} r + 4\sum_{r=1}^{n} 1$$

$$\frac{9}{6}n(n+1)(2n+1) - 12\left[\frac{n}{2}(n+1)\right] + 4(n)$$

$$\frac{3n}{2}(2n^{2} + 3n + 1) - 6n(n+1) + 4n$$

$$\frac{n}{2}[6n^{2} + 9n + 3 - 12n - 12 + 8) = \frac{n}{2}[6n^{2} - 3n - 1]$$

$$\int_{1}^{n} (3r-2)^{2} = \sum_{r=1}^{n} (3r-2)^{2} - \sum_{r=1}^{4} (3r-2)^{2}$$

$$\int_{1}^{n} (3r-2)^{2} = \frac{n}{2}[6n^{2} - 3n - 1] - \frac{4}{2}[6(4)^{2} - 3(4) - 1]$$

$$3n^{3} - \frac{3n^{2}}{2} - \frac{n}{2} - 166$$

 $\sum_{r=1}^{20} r\cos\left(\frac{r\pi}{2}\right)$ has a periodic nature since $\cos\left(\frac{r\pi}{2}\right)$ will be zero for odd r and for even r it will either be 1 or -1. Simply by writing out the first few terms, we can see what this sum will be:

$$\sum_{n=1}^{\infty} rcos\left(\frac{r\pi}{2}\right) = 0 - 1 + 0 + 3 + 0 - 5 + \dots - 18 + 0 + 20$$

Adding up the terms manually gives $\sum_{r=1}^{28} rcos\left(rac{r\pi}{2}
ight) = 14.$

$$\frac{n^{3} - \frac{3n^{2}}{2} - \frac{n}{2} - 166 + 103(14) = 3n^{3}}{\frac{n^{2}}{2} + \frac{n}{2} - 1276 = 0}$$

Quadratic formula: n = 29 or $n = -\frac{88}{3}$. Term number must be a positive nteger so n = 29.